FACULTY OF INFORMATICS

M.C.A. (CBCS) III - Semester (Backlog) (2020-2021 Batch) (Old) Examination, April 2022
 Subject: Design and Analysis of Algorithm

 Max. Marks: 70Time: 3 Hours
(Missing data, if any, may be suitably assumed)
Note: Answer any five questions from the following. All questions carry equal marks.

1 (a) Define an algorithm. Explain about randomized algorithms.
(b) Explain the different criteria of algorithm.

2 (a) Discuss the insertion and deletion in a minheap.
(b) Form a minheap with the following elements and perform one deletion 1,2,3,17,19,36,7,25,100.

3 (a) Explain binary search.
(b) Find the elements 23,32 in the following list of elements using binary search: $2,5,8,12,16,23,38,56,72,91$.

4 (a) Explain job sequencing with deadlines.
(b) Solve the following job sequencing with deadlines problem $\mathrm{n}=7$; $(\mathrm{p} 1 \ldots \mathrm{p} 7)=(35,30,25,20,15,12,5) ;(\mathrm{d} 1 \ldots \mathrm{~d} 7)=(3,4,4,2,3,1,2)$

5 (a) Explain about multistage graphs in detail.
(b) Solve the following multistage graphs using backward approach:

6 (a) Explain about how to find biconnected components and articulation points.
(b) Find the tree edges, back edges, biconnected components and articulation points in the following graph.

7 (a) Explain 8 queens problem.
(b) Explain 8 queens problem using a state space tree.

8 (a) Explain 0/1 knapsack problem.
(b) Solve the following travelling salesperson problem.

9 (a) Discuss in detail cook's theorem.
(b) Differentiate NP-Hard and NP-Complete problems.

10 (a) Explain about Node Cover Decision problem.
(b) Explain about flow shop scheduling problem.

Subject: Design and Analysis of Algorithms

Time: 3 Hours

Max. Marks: 70

(Missing data, if any, may be suitably assumed)
 Note: Answer any five questions from the following. All questions carry equal marks.

1 (a) Explain in detail about the insertion and deletion in queue with algorithms.
(b) Differentiate and explain;
(i) Union and Weighted union
(ii) Find and Collapsing.

2 (a) Write algorithms to explain how you insert and delete an element in heap.
(b) Insert 46 in the following heap and perform one deletion.

3 (a) Write an algorithm to perform merge sort.
(b) Perform merge sort for the following list:
121113567.

4 (a) Write an algorithm to solve the job sequencing with deadlies.
(b) Solve the following knapsack problem
$N=7 ; m=15 ;(p 1 \ldots . . p 7)=(10,5,15,7,6,18,3) ;(w 1 \ldots w 7)=(2,3,5,7,1,4,1)$.
5 (a) Explain general method of dynamic programming. What is the principle of optimality?
(b) Solve the following $0 / 1$ knapsack problem.
$\mathrm{N}=4 ; \mathrm{m}=8 ;(\mathrm{p} 1 \ldots \mathrm{p} 4)=(4,3,2,4) ;(\mathrm{w} 1 \ldots \mathrm{w} 4)=(2,6,7,3)$.
6 (a) Write an algorithm for reliability design.
(b) Solve the following travelling salesperson problem.

7 (a) Explain 8-Queen's problem.
(b) Solve the following sum of subsets problem $M=35 ; w=\{5,7,10,12,15,18,20\}$.

8 (a) Explain Hamiltonian cycles.
(b) Solve the following travelling salesperson problem.

9 (a) Explain Clique decision problem.
(b) Explain Node cover decision problem.

10 (a) Explain flow shop scheduling.
(b) Explain job shop scheduling.

